2,394 research outputs found

    Adsorbate Electric Fields on a Cryogenic Atom Chip

    Full text link
    We investigate the behaviour of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency we measure the field strength versus distance from a 1 mm square of YBCO patterned onto a YSZ chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that, through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface coupling schemes.Comment: 5 pages, 4 figure

    Electron beam driven alkali metal atom source for loading a magneto-optical trap in a cryogenic environment

    Full text link
    We present a versatile and compact electron beam driven source for alkali metal atoms, which can be implemented in cryostats. With a heat load of less than 10mW, the heat dissipation normalized to the atoms loaded into the magneto-optical Trap (MOT), is about a factor 1000 smaller than for a typical alkali metal dispenser. The measured linear scaling of the MOT loading rate with electron current observed in the experiments, indicates that electron stimulated desorption is the corresponding mechanism to release the atoms.Comment: 5 pages, 3 figure

    Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts

    No full text
    A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 mu L of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions

    Textural Properties and Structure of Starch-Reinforced Surimi Gels as Affected by Heat-Setting

    Get PDF
    The gel forming behavior of red hake (Urophycis chuss) surimi with and without starch and its relationship to the structure of the gel matrix were studied. For surimi gels without starch, a combination of preheat- setting at 40 C and cooking at 90 C resulted in significantly greater gel strength than cooking alone. However, preheat - setting of gels containing wheat or potato starch had no significant effect on gel strength demonstrating an opposite trend in gel strength due to the differences in swelling power, water holding ability and gelatinization temperature between potato and wheat starches. This difference in gel forming behavior due to the sources of starch and heat- setting prior to cooking correlated with changes in the structure of the matrix as evidenced by the results of image analysis. An examination of the microstructure of the gel matrix by light and electron microscopy showed that the structural differences may be due to the different protein matrix density as reflected in the increased gel strength

    Textural and Microstructural Properties of Frozen Fish Mince as Affected by the Addition of Nonfish Proteins and Sorbitol

    Get PDF
    Changes in textural and microstructural properties of washed and unwashed frozen fish mince were studied as affected by the addition of non fish proteins (soy protein isolate, milk protein isolate, egg white, and wheat gluten at 2 , 4 or 6%) and 6% crystalline sorbitol. Soy and milk proteins and sorbitol reduced the hardness of frozen fish mince, while egg white and wheat gluten made the texture firmer without rubberiness developing after frozen storage. All nonfish proteins and sorbitol stabilized the myofibrillar organization by reducing freeze-induced contraction of myofibrils. The mechanisms of reducing texture hardening appear to be different between sorbitol and nonfish proteins. Water binding properties and dispersibility made the difference among nonfish proteins in reducing freeze-contraction of myofibrils. Nonfish proteins not only reduced texture hardening during frozen storage, but also modified texture during cooki ng as they underwent thermal gelation specific to each protein used

    In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells

    Get PDF
    Oncogenic signaling in melanocytes results in oncogene-induced senescence (OIS), a stable cell-cycle arrest frequently characterized by a bi- or multinuclear phenotype that is considered as a barrier to cancer progression. However, the long-sustained conviction that senescence is a truly irreversible process has recently been challenged. Still, it is not known whether cells driven into OIS can progress to cancer and thereby pose a potential threat. Here, we show that prolonged expression of the melanoma oncogene N-RAS61K in pigment cells overcomes OIS by triggering the emergence of tumor-initiating mononucleated stem-like cells from senescent cells. This progeny is dedifferentiated, highly proliferative, anoikis-resistant and induces fast growing, metastatic tumors. Our data describe that differentiated cells, which are driven into senescence by an oncogene, use this senescence state as trigger for tumor transformation, giving rise to highly aggressive tumor-initiating cells. These observations provide the first experimental in vitro evidence for the evasion of OIS on the cellular level and ensuing transformation

    Mesoscopic structure and social aspects of human mobility

    Get PDF
    The individual movements of large numbers of people are important in many contexts, from urban planning to disease spreading. Datasets that capture human mobility are now available and many interesting features have been discovered, including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows of mobility - the sets and sequences of visited locations - have not been well studied. We show that individual mobility is dominated by small groups of frequently visited, dynamically close locations, forming primary "habitats" capturing typical daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel. Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may influence processes such as information spreading and revealing new connections between human mobility and social networks.Comment: 7 pages, 5 figures (main text); 11 pages, 9 figures, 1 table (supporting information
    • …
    corecore